

Spectral Assignments and Reference Data

Reassignment of the ¹H NMR spectrum of fusidic acid and total assignment of ¹H and ¹³C NMR spectra of some selected fusidane derivatives

Niels Rastrup-Andersen^{1*} and Tore Duvold²

¹ Department of Spectroscopy, Leo Pharmaceutical Products Ltd, Industriparken 55, DK 2750 Ballerup, Denmark

² Department of Medicinal Chemistry, Leo Pharmaceutical Products Ltd, Industriparken 55, DK 2750 Ballerup, Denmark

Received 18 February 2002; accepted 13 March 2002

Reassignment of the ¹H and ¹³C NMR spectra of fusidic acid and the total assignment of lumifusidic acid and some important di- and tetra-hydrofusidic acid derivatives are reported. Copyright © 2002 John Wiley & Sons, Ltd.

Table 1. ¹H chemical shifts (ppm) of selected fusidanes^a

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; fusidic acid; spectral reassignment; lumifusidic acid; di- and tetra-hydrofusidic acid; 2D NMR

INTRODUCTION

Fusidic acid $(1)^{1,2}$ is an important antibiotic used in the treatment of staphylococcal infections in man. Fusidanes differ from common steroids in the androstane and cholestane families by their unique tetracyclic ring system with a chair–boat–chair conformation and their additional methyl groups.

Although the chemical, biological and medical properties of fusidanes are well described in the literature,³ very few assigned NMR data have been published. Only ¹³C and crude ¹H NMR data of **1** obtained by selective ¹³C-¹H spin decoupling⁴ have previously been published.

In this paper we give the revised total and unambiguous ¹H and ¹³C assignments fusidic acid in addition to assignments for related saturated analogues of biological importance.⁴

*Correspondence to: Niels Rastrup-Andersen, Department of Spectroscopy, Leo Pharmaceutical Products, Industriparken 55, DK 2750 Ballerup, Denmark. E-mail: niels.rastrup@leo-pharma.com

H at C	1	2	3	4	5	6	7	8	9	10	11	12
	-	-	0	1	0	Ũ	,	0	,	10		
1	1.51/2.17	1.44/2.30	1.51/2.17	1.39/2.22	1.46/2.16	1.50/2.15	1.40/2.16	1.51/2.23	1.51/2.16	1.50/2.13	1.48/2.19	1.50/2.15
2	1.75/1.86	1.82	1.65/1.85	1.78	1.74/1.80	1.74/1.85	1.77	1.75/1.84	1.74/1.86	1.74/1.87	1.72/1.83	1.74/1.86
3	3.76	3.80	3.76	3.77	3.71	3.75	3.75	3.74	3.75	3.76	3.73	3.74
4	1.58	1.51	1.58	1.49	1.51	1.58	1.51	1.56	1.60	1.61	1.56	1.59
5	2.11	2.16	2.11	2.12	2.06	2.07	2.10	2.11	2.07	2.07	2.09	2.07
6	1.13/1.59	1.13/1.68	1.10/1.61	1.13/1.68	1.10/1.62	1.07/1.57	1.11/1.66	1.13/1.67	1.07/1.58	1.06/1.55	1.10/1.62	1.08/1.58
7	1.12/1.74	1.12/1.61	1.14/1.74	1.06/1.65	1.07/1.71	1.07/1.76	1.08/1.66	1.16/1.65	1.11/1.82	1.13/1.83	1.12/1.74	1.11/1.82
8	—	_	_	_	_	—	—	_	—	—	_	_
9	1.57	1.64	1.57	1.53	1.52	1.54	1.62	1.51	1.49	1.48	1.45	1.49
10	_	_	_	_	_	—	_	_	_	_	_	_
11	4.35	4.28	4.36	4.24	4.30	4.34	4.24	4.38	4.37	4.30	4.28	4.37
12	1.85/2.33	1.54/2.07	1.85/2.29	1.42/1.65	1.41/1.74	1.66/1.92	1.60/1.69	1.83/2.08	1.56/1.66	1.80/1.95	1.51/1.74	1.57/1.65
13	3.06	2.95	3.05	2.01	2.12	2.60	2.51	3.53	2.65	2.66	2.26	2.65
14	—	—	—	—	—	—	—	—	—	—	—	—
15	1.30/2.19	1.36/2.05	1.30/2.18	1.15/2.08	1.18/2.04	1.34/1.96	1.41/1.90	1.22/2.28	1.73/1.88	1.79/1.90	1.78/1.85	1.72/1.87
16	5.88	5.64	5.87	4.91	5.33	5.32	5.39	4.94	5.00	4.99	4.86	5.01
17	—	—	—	2.11	2.13	2.71	2.68*	—	2.70	3.15	2.62	2.68
18	0.91	0.95	0.91	0.95	0.94	1.01	1.01	0.81	0.89	0.90	0.84	0.88
19	0.98	0.98	0.98	0.97	0.96	0.97	0.97	0.97	0.97	0.96	0.95	0.96
20	—	—	—	2.25	2.57	2.71	2.68*	—	2.52	2.79	2.70	2.49
21	—	—	—	—	—	—	—	—	—	—	—	—
22	2.46	2.17	2.39	1.41/1.59	1.37/1.72	1.52/1.85	1.49	2.21	1.47/1.82	1.71/1.86	1.55/1.89	1.41/1.76
23	2.07/2.17	2.10/2.15	1.33/1.48	1.21/1.33	1.32	1.99	1.93/2.01	2.21/2.34	2.00/2.09	2.21/2.29	1.43	1.35
24	5.10	5.05	1.18	1.14	1.17	5.06	5.05	5.11	5.09	5.09	1.21	1.19
25	_	_	1.53	1.49	1.51	_	_	_	_	_	1.55	1.54
26	1.60	1.58	0.86*	0.84^{*}	0.86	1.58	1.57	1.60	1.61	1.63	0.88^{*}	0.87^{*}
27	1.67	1.66	0.86*	0.84^{*}	0.86	1.68	1.66	1.68	1.69	1.70	0.88^{*}	0.87*
28	0.92	0.91	0.92	0.92	0.91	0.91	0.91	0.93	0.92	0.92	0.92	0.92
30	1.38	1.34	1.38	1.35	1.30	1.33	1.31	1.51	1.36	1.34	1.38	1.36
acetyl	1.96	2.03	1.96	2.02	2.04	1.95	2.01					

^a Asterisk indicates interchangable signals.

Spectral Assignments and Reference Data

EXPERIMENTAL

Materials

All compounds used were prepared and purified as described previously.^{1,2,5} The purity of all compounds characterized was more than 95%. The Empirical formulae of all the structures described were confirmed by mass spectrometry. Elementary analysis, UV, IR and X-ray^{6,7} single crystal crystallography were used whenever appropriate.

Spectra

All NMR experiments were performed at 300 K in CDCl₃ (Merck UVASOLE) on either a Bruker ARX300 spectrometer equipped with a 5 mm QNP probe or on a Bruker DRX500 equipped with a 5 mm z gradient inverse broad-band probe. The sample concentration used varied between 0.03 and 0.1 mmol ml⁻¹. Tetramethylsilane ($\delta = 0.00$ ppm) was used as internal reference. The 1D experiments used flip angles of 30° and 45° for ¹H and ¹³C respectively, and pulse delays of 5 s and 2 s were used for ¹H and ¹³C respectively.

Standard pulse sequences were taken from the Bruker pulse program library and special parameters were adjusted individually for each molecule investigated.

1D $^1\rm H$, proton decoupled (CPD) $^{13}\rm C$ and DEPT-135 spectra were used to obtain the $^1\rm H$ and $^{13}\rm C$ chemical shifts. The minimum

Table 2. ¹³C chemical shifts (ppm) of selected fusidanes^a

frequencies per point used during acquisition for 1D spectra were 0.15 Hz (¹H) and 0.33 Hz (¹³C). Zero filling up to four times was used whenever necessary to obtain sufficient digital resolution. Exponential multiplication (0.2 Hz (¹H) and 1–2 Hz (¹³C)) was applied before Fourier transformation.

Proton–proton connectivities were established through COSY and HH-TOCSY experiments (min. eight scans per, t_1 , (256–512) × 2048 data matrix size).

The corresponding carbon atoms were assigned through HMQC (min. eight scans per t_1 , 256 × 2048 data matrix size) and CH-TOCSY (32 scans per t_1 , 512 × 2048 data matrix size) experiments, whereas connectivities to quarternary carbon atoms were obtained from a *Z*-gradient version of the HMBC (two to eight scans per t_1 , 256 × 2048 data matrix size) experiment.

The stereochemistry was finally confirmed through a phasesensitive 2D NOESY experiment and the adiabatic version of T-ROESY using a shaped off-resonance spinlock pulse for mixing.⁸

RESULTS AND DISCUSSION

The total assignments of the ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR spectra of the compounds investigated are given in Tables 1 and 2 respectively.

C number	1	2	3	4	5	6	7	8	9	10	11	12
1	30.17	29.23*	30.17	29.31	29.62	30.38	29.57	30.09	30.43	30.47	30.09	30.35
2	29.84	29.30*	29.83	29.31	29.71	29.98	29.72	29.86	29.97	30.02	29.95	29.96
3	71.53	72.47	71.53	72.26	71.71	71.47	71.97	71.32	71.35	71.36	71.31	71.32
4	36.38	37.36	36.39	37.60	37.04	36.23	37.00	36.77	36.08	35.75	36.59	36.18
5	36.01	34.86	36.00	34.72	35.60	36.40	35.17	35.84	36.63	36.67	36.06	36.47
6	20.87	21.74	20.88	21.90	21.40	21.00	21.60	21.07	21.02	20.76	21.11	21.07
7	32.14	29.99	32.13	30.16	31.69	32.56	30.61	31.51	33.04	33.42	32.31	32.85
8	39.48	40.06	39.48	40.25	40.39	40.63	40.81	40.83	41.39	41.02	40.12	41.37
9	49.32	49.67	49.33	49.99	50.29	49.40	49.32	50.48	49.63	49.20	50.00	49.65
10	36.95	36.30	36.95	36.24	36.78	37.19	36.45	37.07	37.35	37.34	37.02	37.26
11	68.24	68.47	68.28	68.52	68.55	68.85	68.83	67.86	68.72	68.63	68.42	68.66
12	35.58	33.53	35.47	35.01	34.22	34.38	32.91	31.70	32.89	34.55	35.55	32.98
13	44.29	42.37	44.11	40.59	38.26	38.28	39.29	38.17	38.75	41.39	36.59	38.72
14	48.72	49.67	48.69	49.36	48.63	49.40	49.18	55.20	48.70	48.16	51.32	48.68
15	38.96	39.41	38.96	39.77	40.05	40.63	41.08	34.05	39.98	40.27	39.98	39.95
16	74.47	74.95	74.45	79.65	76.52	76.37	75.96	81.88	84.25	83.50	82.93	84.28
17	150.75	141.84	149.79	48.36	48.23	44.39	45.63*	170.02	46.83	42.90	44.24	46.84
18	17.78^{*}	17.10	17.80	16.10	16.30	17.26	17.29	19.94	17.53	19.60	17.46	17.46
19	22.99	24.32	23.01	24.52	23.70	22.74	23.98	23.42	22.61	22.21	23.21	22.75
20	129.64	132.10	130.22	49.92	45.15	45.23	44.33*	123.47	42.39	44.05	44.09	42.80
21	174.37	173.42	174.50	178.86	178.53	181.44	180.00	176.62	180.99	179.96	178.55	181.16
22	28.77	32.14	28.85	31.58	30.12	32.90	33.97	27.46	33.84	27.68	26.00	33.89
23	28.46	26.89	27.78	25.12	25.82	25.39	25.68	24.04	25.69	27.08	26.29	25.06
24	123.10	123.28	38.74	38.81	38.98	123.32	123.47	123.32	122.91	123.47	38.78	38.63
25	132.58	132.36	27.81	27.94	27.92	132.37	132.08	132.75	132.86	133.16	27.89	27.79
26	17.84^{*}	17.79	22.62*	22.74*	22.69	17.71	17.65	17.79	17.84	17.92	22.69*	22.65*
27	25.71	25.66	22.58*	22.51*	22.69	25.67	25.69	25.68	25.69	25.77	22.51*	22.56*
28	15.92	15.72	15.92	15.79	16.04	16.00	15.82	15.99	15.99	15.98	15.96	16.00
30	23.94	21.74	23.93	21.68	22.57	23.79	22.29	23.02	23.79	24.83	23.26	23.65
CO	170.70	170.51	170.75	170.79	170.81	170.09	170.30					
COCH ₃	20.60	21.29	20.60	21.37	21.40	20.65	21.36					

^a Asterisk indicates interchangable signals.

Spectral Assignments and Reference Data

The structural differences between the compounds investigated are generally observed in the 1 H and 13 C chemical shifts from the nuclei in rings C and D.

Changing the orientation of the side chain as in going from 1 to 2 results in a 9 ppm upfield shift of C-17, whereas C-20 and C-22 show smaller downfield shifts. C-12 and the two H-12 protons are also affected by the side-chain orientation, but not to the same degree as the protons at C-16 and C-22, which show considerable downfield shifts.

Differences in the ring straw between rings C and D can be observed by comparing **1** and **8**: C-12, C-13, C-15 and C-20 show considerable upfield shifts, whereas C-14, C-16 and especially C-17 show large downfield shifts. Also, C-18 is affected by the ring straw. In the ¹H spectra, only the protons at C-13, C-16 and C-22 are affected considerably.

Changing the stereochemistry at C-20 from *S* to *R* on the 17*R* isomers (**6** and **7**) has very little effect, whereas a similar change on the 17*S* isomers (**4** and **5**) shows small upfield shifts on C-13, C-16 and C-20, as well as a considerable downfield shift on the protons at C-16 and C-20. Changing the stereochemistry at C-17 from *S* to *R* (**4** to **6**) results in upfield shifts on C-13, C-16, C-17, C-19, C-20 and C-21, whereas C-18 shows a downfield shift.

Acknowledgements

The authors would like to thank Ms Lone Dolleriis, Ms Anne-Grethe Moeller and Ms Karin Hvidtfeldt Hansen for technical assistance.

REFERENCES

- 1. Godtfredsen WO, Vangedal S. Tetrahedron 1962; 18: 1029.
- 2. Godtfredsen WO. Fusidic acid and some related antibiotics. Doctoral Thesis, University of Copenhagen, 1967.
- Von Daehne W, Godtfredsen WO, Rasmussen PR. Adv. Appl. Microbiol. 1979; 25: 95.
- Riisom T, Jakobsen HJ, Rastrup-Andersen N, Lorck H. Tetrahedron Lett. 1974; 96: 2247.
- Duvold T, Sørensen MD, Björkling F, Henriksen AS, Rastrup-Andersen N. J. Med. Chem. 2001; 44: 3125.
- 6. Sotofte I, Duvold T. Acta Crystallogr. Ser. E 2001; 57: 829.
- 7. Cooper A, Hodgkin DC. Tetrahedron 1968; 24: 909.
- Desvaux H, Berthault P, Birlirakis N, Goldman M, Piotto M. J. Magn. Reson. Ser. A 1995; 113: 47.

Magn. Reson. Chem. 2002; 40: 471-473